Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(half(X)) → A__HALF(mark(X))
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
A__SQR(s(X)) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
MARK(dbl(X)) → A__DBL(mark(X))
MARK(add(X1, X2)) → MARK(X2)
MARK(first(X1, X2)) → MARK(X2)
MARK(recip(X)) → MARK(X)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
A__SQR(s(X)) → A__SQR(mark(X))
MARK(terms(X)) → MARK(X)
MARK(first(X1, X2)) → MARK(X1)
A__ADD(0, X) → MARK(X)
MARK(terms(X)) → A__TERMS(mark(X))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__DBL(s(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
A__HALF(s(s(X))) → A__HALF(mark(X))
MARK(sqr(X)) → MARK(X)
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
MARK(half(X)) → MARK(X)
A__ADD(s(X), Y) → MARK(X)
A__HALF(dbl(X)) → MARK(X)
A__TERMS(N) → MARK(N)
MARK(s(X)) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
A__HALF(s(s(X))) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
A__DBL(s(X)) → A__DBL(mark(X))
A__TERMS(N) → A__SQR(mark(N))
A__SQR(s(X)) → A__DBL(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

MARK(half(X)) → A__HALF(mark(X))
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
A__SQR(s(X)) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
MARK(dbl(X)) → A__DBL(mark(X))
MARK(add(X1, X2)) → MARK(X2)
MARK(first(X1, X2)) → MARK(X2)
MARK(recip(X)) → MARK(X)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
A__SQR(s(X)) → A__SQR(mark(X))
MARK(terms(X)) → MARK(X)
MARK(first(X1, X2)) → MARK(X1)
A__ADD(0, X) → MARK(X)
MARK(terms(X)) → A__TERMS(mark(X))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__DBL(s(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
A__HALF(s(s(X))) → A__HALF(mark(X))
MARK(sqr(X)) → MARK(X)
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
MARK(half(X)) → MARK(X)
A__ADD(s(X), Y) → MARK(X)
A__HALF(dbl(X)) → MARK(X)
A__TERMS(N) → MARK(N)
MARK(s(X)) → MARK(X)
MARK(add(X1, X2)) → MARK(X1)
A__HALF(s(s(X))) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
A__DBL(s(X)) → A__DBL(mark(X))
A__TERMS(N) → A__SQR(mark(N))
A__SQR(s(X)) → A__DBL(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

A__SQR(s(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(half(X)) → A__HALF(mark(X))
MARK(sqr(X)) → A__SQR(mark(X))
MARK(dbl(X)) → A__DBL(mark(X))
MARK(add(X1, X2)) → MARK(X2)
MARK(first(X1, X2)) → MARK(X2)
MARK(recip(X)) → MARK(X)
MARK(terms(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
MARK(first(X1, X2)) → MARK(X1)
A__ADD(0, X) → MARK(X)
MARK(terms(X)) → A__TERMS(mark(X))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__DBL(s(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
A__HALF(s(s(X))) → A__HALF(mark(X))
MARK(sqr(X)) → MARK(X)
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
MARK(half(X)) → MARK(X)
A__ADD(s(X), Y) → MARK(X)
A__HALF(dbl(X)) → MARK(X)
A__TERMS(N) → MARK(N)
MARK(add(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__HALF(s(s(X))) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
A__TERMS(N) → A__SQR(mark(N))
A__DBL(s(X)) → A__DBL(mark(X))
A__SQR(s(X)) → A__DBL(mark(X))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


A__SQR(s(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(dbl(X)) → A__DBL(mark(X))
MARK(add(X1, X2)) → MARK(X2)
MARK(first(X1, X2)) → MARK(X2)
MARK(recip(X)) → MARK(X)
MARK(terms(X)) → MARK(X)
A__SQR(s(X)) → A__SQR(mark(X))
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
MARK(first(X1, X2)) → MARK(X1)
A__ADD(0, X) → MARK(X)
MARK(terms(X)) → A__TERMS(mark(X))
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__DBL(s(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(dbl(X)) → MARK(X)
A__HALF(s(s(X))) → A__HALF(mark(X))
MARK(sqr(X)) → MARK(X)
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__ADD(s(X), Y) → MARK(X)
A__HALF(dbl(X)) → MARK(X)
A__TERMS(N) → MARK(N)
MARK(add(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__HALF(s(s(X))) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
A__DBL(s(X)) → A__DBL(mark(X))
A__SQR(s(X)) → A__DBL(mark(X))
The remaining pairs can at least be oriented weakly.

MARK(half(X)) → A__HALF(mark(X))
MARK(sqr(X)) → A__SQR(mark(X))
MARK(half(X)) → MARK(X)
A__TERMS(N) → A__SQR(mark(N))
Used ordering: Combined order from the following AFS and order.
A__SQR(x1)  =  A__SQR(x1)
s(x1)  =  s(x1)
MARK(x1)  =  x1
first(x1, x2)  =  first(x1, x2)
A__FIRST(x1, x2)  =  A__FIRST(x2)
mark(x1)  =  x1
half(x1)  =  x1
A__HALF(x1)  =  x1
sqr(x1)  =  sqr(x1)
dbl(x1)  =  dbl(x1)
A__DBL(x1)  =  A__DBL(x1)
add(x1, x2)  =  add(x1, x2)
recip(x1)  =  recip(x1)
terms(x1)  =  terms(x1)
cons(x1, x2)  =  cons(x1)
A__ADD(x1, x2)  =  A__ADD(x1, x2)
0  =  0
A__TERMS(x1)  =  A__TERMS(x1)
a__sqr(x1)  =  a__sqr(x1)
a__dbl(x1)  =  a__dbl(x1)
nil  =  nil
a__add(x1, x2)  =  a__add(x1, x2)
a__half(x1)  =  x1
a__first(x1, x2)  =  a__first(x1, x2)
a__terms(x1)  =  a__terms(x1)

Recursive Path Order [2].
Precedence:
[first2, afirst2] > AFIRST1 > [s1, ADBL1, AADD2]
[first2, afirst2] > cons1 > [s1, ADBL1, AADD2]
[first2, afirst2] > nil > [s1, ADBL1, AADD2]
[terms1, aterms1] > [ASQR1, sqr1, dbl1, ATERMS1, asqr1, adbl1] > [add2, aadd2] > [s1, ADBL1, AADD2]
[terms1, aterms1] > recip1 > [s1, ADBL1, AADD2]
[terms1, aterms1] > cons1 > [s1, ADBL1, AADD2]
0 > [s1, ADBL1, AADD2]


The following usable rules [14] were oriented:

mark(nil) → nil
a__add(X1, X2) → add(X1, X2)
mark(dbl(X)) → a__dbl(mark(X))
a__half(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__half(s(0)) → 0
a__first(0, X) → nil
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__add(0, X) → mark(X)
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
a__half(dbl(X)) → mark(X)
a__terms(X) → terms(X)
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
a__sqr(X) → sqr(X)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
mark(terms(X)) → a__terms(mark(X))
a__sqr(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__dbl(0) → 0
mark(0) → 0
a__dbl(X) → dbl(X)
mark(sqr(X)) → a__sqr(mark(X))
mark(s(X)) → s(mark(X))
a__half(s(s(X))) → s(a__half(mark(X)))
a__first(X1, X2) → first(X1, X2)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(recip(X)) → recip(mark(X))
a__half(X) → half(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(half(X)) → A__HALF(mark(X))
MARK(sqr(X)) → A__SQR(mark(X))
MARK(half(X)) → MARK(X)
A__TERMS(N) → A__SQR(mark(N))

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(half(X)) → MARK(X)

The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MARK(half(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
half(x1)  =  half(x1)

Recursive Path Order [2].
Precedence:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPOrderProof
QDP
                      ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.